Химические реакции

 

Во всех описанных процессах атомы и ионы не меняли своих напарников. Но, конечно, возможны обстоятельства, в которых сочетания атомов меняются, образуя новые моле­кулы. Это показано на фиг. 1.8. Процесс, в котором атомные партнеры меняются местами, называется химической реак­цией. Описанные нами прежде процессы называются физиче­скими, но трудно указать резкую границу между теми и другими. (Природе все равно, как мы это назовем, она просто делает свое дело.) На картинке мы хотели показать, как уголь горит в кислороде. Молекула кислорода состоит из двух атомов, сцепленных очень крепко. (А почему не из трех или даже не из четырех? Такова одна из характерных черт атомных процессов: атомы очень разборчивы, им нра­вятся определенные партнеры, определенные направления и т.д. Одна из обязанностей физики — разобраться, почему они хотят именно то, что хотят. Во всяком случае два атома кислорода, довольные и насыщенные, образуют молекулу.)

Предположим, что атомы углерода образуют твердый кри­сталл (графит или алмаз алмаз тоже может сгореть в воздухе). Одна из молекул кислорода может пробраться к углероду, каждый ее атом подхватит по атому углерода и улетит в новом сочетании углерод — кисло­род. Такие молекулы образуют газ, называемый угарным. Его химическое имя СО. Что это значит? Буквы СО — это фактически картинка такой молекулы: С —углерод, О — кис­лород. Но углерод притягивает к себе кислород намного сильнее, чем кислород притягивает кислород или углерод — углерод. Поэтому кислород для этого процесса может посту­пать с малой энергией, но, схватываясь с неимоверной жад­ностью и страстью с углеродом, высвобождает энергию, по­глощаемую всеми соседними атомами. Образуется большое количество энергии движения (кинетической энергии). Это, конечно, и есть горение; мы получаем тепло от сочетания кис­лорода и углерода. Теплота в обычных условиях проявляется в виде движения молекул нагретого газа, но иногда ее может быть так много, что она вызывает и свет. Так получается пламя.

Вдобавок молекулы СО могут не удовольствоваться до­стигнутым. У них есть возможность подсоединить еще один атом кислорода; возникает более сложная реакция: кислород в паре с углеродом столкнется с другой молекулой СО. Атом кислорода присоединится к СО и в конечном счете обра­зуется молекула из одного углерода и двух кислородов. Ее обозначают СО2 и называют углекислым газом. Когда углерод сжигают очень быстро (скажем, в моторе автома­шины, где взрывы столь часты, что углекислота не успевает образоваться), то возникает много угарного газа. Во многих таких перестановках атомов выделяется огромное количество энергии, наблюдаются взрывы, вспыхивает пламя и т.д.; все зависит от реакции.

Химики изучили эти расположения атомов и установили, что любое вещество — это свой тип расположения атомов.

Чтобы объяснить эту мысль, рассмотрим новый пример. У клумбы фиалок вы сразу чувствуете их «запах». Это зна­чит, что в ваш нос попали молекулы, или расположения атомов особого рода. Как они туда попали? Ну, это просто. Раз запах — это молекулы особого рода, то, двигаясь и сталки­ваясь повсюду, они случайно могли попасть и в нос. Конечно, они не стремились попасть туда. Это просто беспомощные толпы молекул, и в своих бесцельных блужданиях эти осколки вещества, случается, оказываются и в носу.

И вот химики могут взять даже такие необычные молекулы, как молекулы запаха фиалок, проанализировать их строение и описать нам точное расположение их атомов в пространстве. Мы, например, знаем, что молекула углекис­лого газа пряма и симметрична: О — С — О (это легко обна­ружить и физическими методами). Но и для безмерно более сложных, чем те, с которыми имеет дело химия, расположе­ний атомов можно после долгих увлекательных поисков по­нять, как выглядит это расположение. На фиг. 1.9 изображен воздух над фиалками. Снова мы находим здесь азот, кисло­род, водяной пар... (А он-то откуда здесь? От влажных фиа­лок. Все растения испаряют воду.) Среди них, однако, ви­тает «чудовище», сложенное из атомов углерода, водорода и кислорода, облюбовавших для себя особого вида располо­жение. Это расположение намного сложнее, чем у углекис­лоты. К сожалению, мы не можем его нарисовать: хотя оно известно химикам очень точно, но оно ведь трехмерное, как его изобразить в двух измерениях?! Как нарисовать шесть углеродов, которые образуют кольцо, но не плоское, а «гармошкой»? Все углы, все расстояния в ней известны. Так вот, химическая формула — это просто картина такой молекулы. Когда химик пишет формулу на доске, он, грубо говоря, пы­тается нарисовать молекулу в двух измерениях. Например, мы видим кольцо из шести углеродов; углеродную цепочку, свисающую с одного конца; кислород, торчащий на конце цепочки; три водорода, привязанные вон к тому углероду; два углерода и три водорода, прилепленные вот здесь, и т.д.

Как же химик узнает, что это за расположение? Возьмет он две пробирки с веществом, сольет их содержимое и смот­рит: если смесь покраснела, значит, к такому-то месту моле­кулы прикреплен один водород и два углерода; если посинела, то... то это ничего не значит. Органическая химия может поспорить с самыми фантастическими страницами де­тективных романов. Чтобы узнать, как расположены атомы в какой-нибудь невероятно сложной молекуле, химик смотрит, что будет, если смешать два разных вещества! Да физик нипочем не поверит, что химик, описывая расположение атомов, понимает, о чем говорит. Но вот уже больше 20 лет, как появился физический метод, который позволяет разглядывать молекулы (не такие сложные, но по крайней мере родственные) и описывать расположение атомов не по цвету раствора, а по измерению расстояний между атомами. И что же? Оказалось, что химики почти никогда не ошибаются!

Оказывается, что действительно в запахе фиалок присут­ствуют три слегка различные молекулы, они отличаются только расстановкой атомов водорода.

Одна из проблем в химии — это придумать такое назва­ние для вещества, чтобы по нему можно было бы узнать, какое оно. Найти имя для его формы! Но оно должно описывать не только форму, а указывать еще, что здесь стоит кис­лород, а вон там — водород, чтобы было точно отмечено, где что стоит. Теперь вы понимаете, почему химические названия так сложны. Это не сложность, а полнота. Название молекулы запаха фиалок поэтому таково: 4-(2,2,3,6-тетраметил-5-циклогексан)-3-бутен-2-OH. Оно полностью описывает строение молекулы (изображенной на фиг. 1.10), а его длина объясняется сложностью молекулы. Дело, значит, вовсе не в том, что химики хотят затуманить мозги, просто им прихо­дится решать сложнейшую задачу описания молекулы сло­вами!

Но откуда мы все-таки знаем, что атомы существуют? А здесь идет в ход уже описанный прием: мы предполагаем их существование, и все результаты один за другим оказы­ваются такими, как мы предскажем, — какими они должны                                                                         быть, если все состоит из атомов. Существуют и более прямые доказательства. Вот одно из них. Атомы так малы, что ни в какой микроскоп их не увидишь (даже в электронный, а уж в световой и подавно). Но атомы все время движутся, и если бросить в воду большой шарик (большой по сравне­нию с атомами), то и он начнет подрагивать. Все равно как в игре в пушбол, где большущий мяч толкают с разных сторон две команды. Толкают в разных направлениях, и куда мяч покатится, не угадаешь. Точно так же будет двигаться и «большой мяч» в воде: в разные моменты времени с разных сторон на него будут сыпаться неодинаковые удары. Поэтому когда мы глядим в хороший микроскоп на мельчайшие час-стички в воде, то видим их непрерывное метание — итог бом­бардировки их атомами. Называется это броуновским дви­жением.

Другие доказательства существования атомов можно из­влечь из строения кристаллов. Во многих случаях их строе-ние, определенное из опытов по прохождению рентгеновских лучей через кристаллы, согласуется по своему пространствен­ному расположению с формой самого природного кристалла. Углы между разными гранями кристалла согласуются с точ­ностью не до градусов, а до секунд дуги с углами, высчи­танными в предположении, что кристалл сложен из множе­ства «слоев» атомов.

Все состоит из атомов. Это самое основное утверждение. В биологии, например, самое важное предположение состоит в том, что все, что делает животное, совершают атомы. Иными словами, в живых существах нет ничего, что не могло бы быть понято с той точки зрения, что они состоят из атомов, действующих по законам физики. Когда-то это не было еще ясно. Потребовалось немало опытов и размышлений, прежде чем высказать это предположение, но теперь оно повсе­местно принято и приносит огромную пользу, порождая но­вые идеи в области биологии.

Да посудите сами! Если уж стальной кубик или кристал­лик соли, сложенный из одинаковых рядов одинаковых ато­мов, может обнаруживать такие интересные свойства; если вода — простые капельки, неотличимые друг от друга и по­крывающие миля за милей поверхность Земли, — способна порождать волны и пену, гром прибоя и странные узоры на граните набережной; если все это, все богатство жизни вод — всего лишь свойство сгустков атомов, то сколько же еще в них скрыто возможностей? Если вместо того, чтобы вы­страивать атомы по ранжиру, строй за строем, колонну за колонной, даже вместо того, чтобы сооружать из них замыс­ловатые молекулы запаха фиалок, если вместо этого распо­лагать их каждый раз по-новому, разнообразя их мозаику, не повторяя того, что уже было, — представляете, сколько необыкновенного, неожиданного может возникнуть в их пове­дении. Разве не может быть, что те «тела», которые разгу­ливают по улице и беседуют с вами, тоже не что иное, как сгустки атомов, но такие сложные, что уже не хватает фанта­зии предугадывать по их виду их поведение. Когда мы назы­ваем себя сгустками атомов, это не значит, что мы  только собрание атомов, потому что такой сгусток, который никогда не повторяется, прекрасно может оказаться способным и на то, чтобы сидеть у стола и читать эти строки.